
Language Classification using N-grams Accelerated by
FPGA-based Bloom Filters

Arpith Jacob
∗

Department of Computer Science and
Engineering

Washington University in St. Louis
St. Louis, Missouri 63130–4899

jarpith@cse.wustl.edu

Maya Gokhale
Center for Applied Scientific Computing

Lawrence Livermore National Laboratory
Livermore, California 94551–0808

maya@llnl.gov

ABSTRACT
N-Gram (n-character sequences in text documents) count-
ing is a well-established technique used in classifying the
language of text in a document. In this paper, n-gram
processing is accelerated through the use of reconfigurable
hardware on the XtremeData XD1000 system. Our design
employs parallelism at multiple levels, with parallel Bloom
Filters accessing on-chip RAM, parallel language classifiers,
and parallel document processing. In contrast to another
hardware implementation (HAIL algorithm) that uses off-
chip SRAM for lookup, our highly scalable implementation
uses only on-chip memory blocks. Our implementation of
end-to-end language classification runs at 85× comparable
software and 1.45× the competing hardware design.

1. INTRODUCTION
An important problem in statistical natural language pro-
cessing is the classification of documents according to lan-
guage. Language classification is an important task for to-
day’s World Wide Web where an increasing number of doc-
uments are in a language other than English. Language
classification finds use in search engine indexing, heuristics
for spam filtering [5], information retrieval, text mining and
other applications that apply language-specific algorithms.
Such classification is a key step in the processing of large
document streams, and is a data-intensive task.

∗This work was performed when the author was a student
intern at the Lawrence Livermore National Laboratory.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice
and the full citation on the first page. To copy otherwise,
to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
HPRCTA’07, November 11, 2007, Reno, Nevada, USA.
Copyright 2007 ACM 978-1-59593-894-7/07/0011...$5.00.

While there are a number of solutions that run on general
purpose processors, the growth of document sets (for exam-
ple on the World Wide Web) has far surpassed micropro-
cessor improvements afforded by Moore’s Law. Field Pro-
grammable Gate Array (FPGA) based systems offer an al-
ternative platform that enable the design of highly parallel
architectures to exploit data parallelism available in specific
algorithms.

A well-known technique to classify the language of a text
stream is to create an n-gram profile for the language [7].
An n-gram is defined as a sequence of characters of length
exactly n. N-grams are extracted from a string, or a doc-
ument, by a sliding window that shifts one character at a
time. An n-gram profile of a set of documents is the t most
frequently occurring n-grams in the set. The probability
that an input document is in a particular language is de-
termined by the closeness of the document’s n-grams to the
language profile.

In this work we use Bloom Filters [6] to improve an ex-
isting FPGA-based n-gram text categorizer, the HAIL ar-
chitecture [9], to build a highly scalable design. We have
implemented our design on the XtremeData XD1000 devel-
opment system which offers tight coupling between an AMD
Opteron microprocessor and an Altera Stratix II FPGA via
the high bandwidth, low latency HyperTransport link. Pre-
liminary results show a 1.45× throughput improvement over
HAIL, and promises a throughput of 1.4 GB/sec as the com-
munication infrastructure improves.

2. RELATED WORK
N-gram computation is a classic, simple technique under-
lying many classification problems [11]. Software n-gram
processing modules are available in open source form, e.g.
in the Apache Lucene project [1], the Ngram Statistics Pack-
age [4] and Mguesser [3], or in commercial form as the Lextek
Language Identifier [2].

A recent FPGA implementation of the n-gram computation
is the HAIL [9] algorithm described as follows:

1. The preprocessing step involves generating the n-gram
profile for each language from a representative sample
of documents.

2. Given an input document in an unknown language, its
n-grams are tested for membership in each language

profile. If a document n-gram is present in a language
profile it is considered an n-gram match, and a corre-
sponding counter is incremented.

3. The language profile with the highest n-gram match
count value is identified, thus indicating the most prob-
able language of the input document.

The authors of HAIL describe a hardware architecture im-
plemented on an FPGA to perform this computation. The
source of bottleneck in the HAIL hardware architecture is
the storage of the n-gram profiles for membership testing.
An off-chip SRAM is used to store n-gram profiles of up to
255 languages. The amount of parallelism that can be ex-
ploited is limited by the number of off-chip SRAMs available,
leading to a design that is not easily scalable.

In contrast, the main contribution of our work is the efficient
use of on-chip embedded RAMs to store a limited number
of n-gram profiles, leading to a more scalable, flexible, and
portable architecture.

3. HARDWARE ARCHITECTURE
3.1 Parallel Bloom Filters
A Bloom Filter [6] is a probabilistic data structure used
to test membership in a large set. The Bloom Filter uses
multiple hash functions and a single memory bit-vector. The
hash functions are applied to an input element generating
address values used to reference the bit-vector. Initially,
the entire bit-vector is reset to zero. When programming a
data element (i.e, the set of elements to be tested for) into a
Bloom Filter, each hash function is first applied on the data
element to generate an address. These address locations are
then set to 1 in the bit-vector. During the test operation,
the bit values at each of the hash function addresses are
read. If they are all set to 1 (i.e, the bitwise AND of all
the values is 1), a match results. The Bloom Filter set and
test operations are illustrated in Algorithm 1. The size of
the bit-vector is typically an order-of-magnitude less than a
direct lookup table. However, though a Bloom Filter does
not produce false negatives it may generate false positives
due to the use of hash functions.

A Bloom Filter is ideally suited for a hardware implemen-
tation due to its inherent parallelism: the hashing and the
memory lookups can be performed independently. We use
the large amounts of distributed on-chip embedded RAMs
available on FPGAs to store the bit-vector. Since embed-
ded RAMs have a finite number of addressing ports, there
is a limit to the number of hash functions that can address
the bit-vector simultaneously. As a result we use a vari-
ant, the Parallel Bloom Filter [10], where each hash function
addresses an independent bit-vector implemented with one
or more physically distinct embedded RAMs. The Parallel
Bloom Filter is a highly scalable data structure for member-
ship testing, and can be implemented efficiently on FPGAs
using these distributed memories.

The Parallel Bloom Filter uses k hash functions of the hardware-
friendly H3 family [13] and references k 1 × m bit-vectors.
A single Parallel Bloom Filter is used to store the n-gram
profile of one language. The datapath of the set and test

Algorithm 1 Pseudocode for the Bloom Filter algorithm

1: // Program language profile L into a Bloom Filter
2: procedure Set(Language profile L)
3: // Reset bit-vector
4: BitV ector ← 0
5:
6: // Program each n-gram in the language profile
7: for n-gram w ǫ L do
8: for hash function Hi do
9: BitV ector[Hi(w)]← 1

10: end for
11: end for
12: end procedure
13:
14: // Test document n-grams D

15: procedure Test(Document n-grams D)
16: for n-gram w ǫ D do
17: V al ← 1
18: for hash function Hi do
19: V al← V al AND BitV ector[Hi(w)]
20: end for
21:
22: if V al = 1 then
23: // n-gram matches profile
24: end if
25: end for
26: end procedure

operations are illustrated in Figure 1. Parallel Bloom Fil-
ters have been used for accelerating a variety of applications
including networking packet inspection [8] and biosequence
similarity search [10]. In what follows, we use Parallel Bloom
Filters and Bloom Filters interchangeably.

The rate f of false positives of the Parallel Bloom Filter is
determined by the number N of n-grams programmed, the
number k of hash functions used, and the length m of its
bit-vector, and is given by f = (1−e−N/m)k. We design our
filters to keep the false positive rate to at most a few percent
of the sizes of the n-gram profiles used. False positives can
adversely impact the language classification accuracy. We
study the tradeoff between classification accuracy and the
filter parameters in Section 5.2.

3.2 Multiple Language Classifier
To support classification of p languages simultaneously, the
Bloom Filter is replicated p times, one for each language,
with each instantiation holding a distinct n-gram profile. At
initialization the n-gram profiles are programmed sequen-
tially for each language (data path omitted in Figure 1 for
brevity). Document n-grams are then tested against each
Bloom Filter in parallel, and an associated language profile
counter is incremented on a match. The hardware architec-
ture of the multiple language classifier is shown in Figure 2a.

Since each bit-vector is physically implemented using em-
bedded RAMs that are typically dual-ported on modern FP-
GAs, we modify the Bloom Filter to test two input n-grams
simultaneously. This can be easily done by duplicating the
hash functions and associated logic to support two indepen-
dent data paths. Once all n-grams in the document have

1

k

profile
n-gram

k hash
functions

k1xm
memories

set

se
t

pro
file

(a) Parallel Bloom Filter set operation

1

k

document
n-gram

k hash
functions

k1xm
memories

test

pro
file

match?

1: may be
 present
0: absent

(b) Parallel Bloom Filter test operation

Figure 1: Using a Parallel Bloom Filter for membership testing of an n-gram language profile

been tested, the match counters are read to determine the
language with the highest count.

3.3 Parallel Multi-language Classifier
The main advantage of our design is its scalability. The
multiple language classifier is easily replicated to test mul-
tiple document n-grams in parallel. For example, using four
copies of the multiple language classifier, we can simultane-
ously test 8 n-grams from the input stream. An adder tree
aggregates the match counts from the individual classifier
modules after the final n-gram in a document is processed.

An alphabet conversion module translates 8-bit extended
ASCII characters (ISO-8859) into a 5-bit code similar to
HAIL [9]. Lower case characters are converted to upper case,
and accented characters are mapped to their non-accented
versions. All other characters are mapped to a default white
space code. This conversion can be implemented using ta-
bles stored in embedded RAMs, or with comparator and
muxing logic as in our case.

While our current implementation is limited to common Eu-
ropean languages representable with extended ASCII, it can
be extended to other encodings such as 16-bit Unicode that
have a larger alphabet. The hash functions of the Bloom
Filter would simply operate on a larger sized input n-gram,
with the rest of the Bloom Filter remaining the same. This is
in contrast to an approach that uses a direct memory lookup
table to store the n-gram profile, which grows exponentially
in the size of the alphabet.

An input word containing multiple translated characters is
buffered and an n-gram is generated at each character posi-
tion. We note that if on-chip memory bandwidth becomes
an issue (due to limited number of embedded RAMs on the
target FPGA), n-grams can be subsampled from the input
stream similar to HAIL. Our implementation is currently
oblivious to word boundaries and simply treats the input as
a continuous stream of characters.

4. IMPLEMENTATION DETAILS

The XtremeData1 architecture combines an AMD Opteron
processor with an FPGA on a dual-socket mother board (see
Figure 3). The Opteron is dual-core, and runs at 2.2 GHz.
The FPGA is an Altera Stratix EP2S180F1508-C3. The
Opteron and Altera each have 4 GB of DRAM, and the Al-
tera can also use 4MB of SRAM. The processor and FPGAs
communicate over non-coherent hypertransport, which has
a peak bandwidth of 1.6 GB/sec in each direction. Cur-
rently, the XtremeData system’s maximum throughput is
500 MB/sec. For this application, the design environment
provided by XtremeData was used, including the HT core
and communication protocol. The application was coded
in VHDL and compiled through the Altera Quartus II tool
chain version 7.1. The Bloom Filter based classifier is also
easily ported to a comparable Xilinx FPGA and can be com-
piled using the Xilinx ISE tool chain.

Registers on the FPGA can be mapped into the operating
system’s memory space, providing access to hardware con-
trol registers. Bulk data transfer is done via DMA. The
DMA controller reads 64-bit words from the DDR memory
(4 GB on our system) connected to the Opteron proces-
sor. The DMA controller is set up for data transfers from
software using the control register interface. The DMA in-
terface is used to program n-gram profiles and transfer input
documents from the host processor to the FPGA. A simpli-
fied block diagram of our n-gram classifier hardware on the
XtremeData system is shown in Figure 2b.

In our implementation we use n-grams of size 4. We use
the top t = 5, 000 most frequently occurring n-grams from
a language training set to generate a profile. As noted in
HAIL [9] this produces over 99% accuracy for the language
classifier.

During the preprocessing step, the bit-vectors are cleared
and the n-gram profiles for each language are programmed.
Multiple text documents stored in the processor’s DDR mem-
ory are streamed to the hardware, delimited by an End of
Document command. Since we use the register interface to
send commands to the classifier module and DMA to trans-
fer document data, they appear asynchronously (and poten-

1http://www.xtremedatainc.com/

1

p

two

n-grams

language
classifiers

match
counters

(a) Multiple language classifier

HT
CORE
(DMA)

parallel multi-language classifier

FPGA

8
 n

-g
ra

m
s

 /
cl

o
ck

HOST
CPU

DDR MEMORY

1.6 GB/sec

HyperTransport

(b) Parallel Multi-language Classifier on the XtremeData sys-
tem

Figure 2: Parallel Bloom Filter based n-gram classifier hardware

Figure 3: XD1000 FPGA Module

tially out of order) in the hardware. To handle this issue, we
first send a size command before each document transfer to
indicate the number of 64-bit words to expect for the doc-
ument. Subsequent commands are only processed once all
the words expected have been received via DMA. We pro-
vide a watchdog timer to reset the state machine in case of
an error.

A Query Result command sends the document classification
results to the software. From the match counts it is possible
to identify the most likely language(s) present in the docu-
ment. In addition, the hardware sends an xor data checksum
and other status bits used to verify a valid document trans-
fer.

5. PERFORMANCE
The HAIL algorithm (using direct memory lookup tables)
was tested for accuracy in the HAIL [9] project. In this

Table 1: Variation of classification accuracy with
Bloom Filter parameters

m k False positives Average Accuracy
(Kbits) (per thousand)

16 4 5 99.45%
16 3 18 97.42%
16 2 69 97.31%
8 4 44 99.42%
8 3 95 97.22%
8 2 209 95.57%
4 6 123 99.41%
4 5 174 96.44%

section we compare the accuracy of the language classifier
using Bloom Filters of various parameters for membership
testing. We use the 768 4 Kbit embedded RAMs available
on the FPGA for the bit-vectors. Increasing the number of
embedded RAMs dedicated to the bit-vector increases clas-
sification accuracy, but also reduces the number of languages
that can be tested simultaneously.

We measured performance using the JRC-ACQUIS Multi-
lingual Parallel Corpus, Version 3.02 [12]. This corpus is the
body of European Union law applicable to the EU mem-
ber states available in 22 European languages. We used 10
languages: Czech, Slovak, Danish, Swedish, Spanish, Por-
tuguese, Finnish, Estonian, French and English. For our
tests we parsed a subset of the corpus with only the text
body saved to individual files. There were an average of
5, 700 documents for each language, with an average of 1, 300
words per document. We used 10% of the corpus as the
training set for each language, and tested the classifier on
the remaining documents.

5.1 Classification Accuracy
In our first experiment we used k = 4 hash functions and
m = 16 Kbits. To support ten languages testing 8 n-grams
per clock, the design uses 640 4 Kbit embedded RAMs. In

2http://wt.jrc.it/lt/Acquis/

Table 2: Resource utilization of the n-gram classifier module for various Bloom Filter parameters
m

k
Logic Logic

M4Ks
Frequency

(Kbits) Utilization Registers (MHz)
16 4 5480 3849 128 182
16 3 4441 3340 96 189
16 2 3547 2780 64 191
8 4 4760 3722 64 194
8 3 4072 3229 48 202
8 2 3363 2713 32 202
4 6 5458 4471 48 197
4 5 4983 4006 40 198

Table 3: Resource utilization of the n-gram classifier hardware for the final implementation

k, m Languages Logic Logic M512s M4Ks M-RAMs Frequency
Utilization Registers (MHz)

4, 16 Kbits 10 38891 27889 36 680 9 194
6, 4 Kbits 30 85924 68423 66 768 6 170

this configuration, the expected false positive rate of the
Bloom Filter is five in one thousand. Tests on our cor-
pus show that the accuracy of the classifier varies between
99.05% and 99.76% with an average of 99.45%. This agrees
well with the results of the HAIL architecture which uses
direct memory to perform membership testing, and is com-
parable to software algorithms used for language identifica-
tion [12].

We note that the false positive rate of the Bloom Filter in
this configuration has little effect on the overall accuracy of
the classifier. In most cases, the difference in match counts
between the two highest scoring languages is significantly
larger than the false positive rate.

5.2 Accuracy and Parallelism Tradeoff
In this section we study the effect of the Bloom Filter param-
eters on its accuracy. Recall that the rate of false positives is
determined by the number N of n-grams programmed, the
number k of hash functions used, and the length m of its
bit-vector, and is given by f = (1 − e−N/m)k. Since N is
fixed, we can vary k and m which are directly proportional
to the accuracy.

We looked at reducing the number of embedded RAMs ded-
icated to the Bloom Filter while still achieving acceptable
classification accuracy. We achieved this by decreasing the
size of the bit-vector and varying the number of hash func-
tions. By reducing the number of embedded RAMs used
per Bloom Filter, and hence per language, we are able to
classify a larger number of languages simultaneously, while
still testing 8 n-grams per clock for maximum throughput.

Table 1 shows the classification accuracy of the corpus for
various Bloom Filter parameters. The expected false posi-
tive rate is also shown for comparison.

The most conservative configuration uses k = 4 hash func-
tions with m = 16 Kbits (four embedded RAMs on our tar-
get) allocated to each bit-vector. Though this provides the
highest accuracy, an implementation on our target FPGA
supports only twelve languages at the desired throughput.

Keeping m constant and reducing k leads to a substantially
decreased accuracy of just over 97%.

Reducing the number of embedded RAMs per bit-vector to
two (8 Kbits), we achieve greater than 99% accuracy with
four hash functions. We were able to maintain this accu-
racy using k = 6 hash functions and just one embedded
RAM (4 Kbits) per bit-vector. This leads to the most space-
efficient configuration and uses just 24 Kbits per language.
Our final implementation on our target FPGA is therefore
able to support thirty languages at the desired throughput.

Table 2 shows the resource utilization for the n-gram classi-
fier hardware module (without infrastructure code) with two
languages accepting eight n-grams per clock. Using smaller
sized bit-vectors, or fewer hash functions has a favourable
impact on the logic utilization in addition to embedded RAM
usage. Additionally, with fewer embedded RAMs per bit-
vector the routing of the design is made easier, thereby in-
creasing the clock frequency.

It is important to note that these results are dependent on
the languages used. We have tried to account for this fact
by selecting similar languages in our corpus. For example,
consistently more Spanish documents were misclassified as
Portuguese, and Estonian documents as Finnish. In cases
of highly similar languages, the expected false positive rate
must be given more importance and a larger number of em-
bedded RAMs dedicated to the bit-vectors, with a corre-
sponding decrease in the number of languages supported.

There are two further avenues for increasing the number of
languages supported. A large fraction of 512 bit embedded
RAMs remain unutilized on the target FPGA which may be
used to support an additional four languages. Secondly, it is
possible to sub-sample the input stream to test only every
other n-gram, similar to the HAIL implementation. This
doubles the number of supported languages while maintain-
ing satisfactory accuracy.

All
Czech
Danish
English
Estonian
Finnish
French
Portuguese
Slovak
Spanish
Swedish

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500

T
hr

ou
gh

pu
t (

M
B

/s
ec

)

Synchronous Asynchronous

Figure 4: Throughput of the n-gram classifier hard-
ware

5.3 Device Utilization
Table 3 shows the device utilization of the n-gram classi-
fier hardware for two configurations on the EP2S180 FPGA,
supporting 10 and 30 languages respectively. Both versions
accept 8 n-grams per clock and run at 194 and 170 MHz
respectively. The logic elements used vary between a third
and two-thirds of the total, with less than half the total
registers on the FPGA being used. These numbers include
resources allocated to infrastructure code (about 10%) such
as the HyperTransport core, DMA controller and command
control logic. The limiting factor in our design is the number
of embedded RAMs available on-chip.

5.4 System Throughput
To measure the throughput of the system we used the con-
figuration with k = 4, m = 16 Kbits accepting 8 n-grams
per clock, placed and routed at 194 MHz. The theoretical
rate at which our design can accept document n-grams is
therefore 194 MHz × 8 = 1, 552 million n-grams per sec-
ond. Since each n-gram corresponds to a byte in the input
stream, our design can perform language classification at
a peak rate of 1.4 GB/sec. This is well within the band-
width of 1.6 GB/sec provided by the HyperTransport bus.
However, the revision of the XtremeData machine we used
achieves only a maximum of 500 MB/sec and so limits the
practical performance realized by our design.

In addition to the hardware, the software is an important
component of the system. Our first version of the software
had tight synchronization between the hardware and soft-
ware components. After a successful transfer of a document
via the DMA interface, the software requests a hardware
interrupt after which the match counters are read and the
results displayed to the user. The hardware interrupt was
used as a synchronization point to ensure correctness.

Our second version removed explicit synchronization and
was coded without interrupts. The hardware was modified
to stop accepting commands until an entire document was
read via DMA. With this modification synchronization is no
longer necessary and ensures correct operation. A software
thread then sends multiple documents without synchroniza-
tion, while another waits for classification results returned
by an FPGA initiated DMA transfer.

To measure system performance, we used the test docu-
ment set from the JRC-ACQUIS Multilingual Parallel Cor-
pus mentioned previously. The average file size of a single
language corpus was 48 MB and the average size of an in-

Table 4: Comparison of n-gram based language clas-
sifiers

System Type Throughput
(MB/sec)

Mguesser AMD Opteron Workstation 5.5
HAIL Xilinx XCV2000E-8 FPGA 324

BloomFilter Altera EP2S180 FPGA 470

dividual file was 10 KB. We measured the wall clock time
for the transfer of documents and receipt of results in mem-
ory. The measured time did not include the Bloom Filter
programming time or I/O time to read documents from sec-
ondary storage to memory. The former is a setup cost that
can be amortized over large runs. With regard to the lat-
ter, our current system is not optimized for high bandwidth
reads from secondary storage, so our performance measure
does not take this into account. Finally, the preprocessing
step to generate the n-gram profiles was not included in the
timing as it is considered a one-time cost prior to classifica-
tion.

Figure 4 plots the throughput in MB/sec of the language
classifier for the ten sets of documents. In addition, we
measured the throughput of documents from all ten lan-
guages which consisted of 52, 581 documents in a corpus of
size 484 MB. The version of the software with tight syn-
chronization shows half the throughput of the asynchronous
version. Clearly, interrupt based synchronization produces
detrimental performance for a streaming architecture.

We observed a throughput of 228 MB/sec and 470 MB/sec
for the two versions respectively. This remained consistent
across the document sets of the various languages and holds
for files with sizes varying from a few Kilobytes to several
Megabytes. If the Bloom Filter programming time is in-
cluded, the throughput of the asynchronous version drops
to 378 MB/sec. However as mentioned previously, this is
easily amortized over larger datasets.

We also note that our observed throughput is close to the
maximum bandwidth available on the current revision of the
XtremeData system. We expect it to increase substantially
as the communication infrastructure improves.

5.5 Comparison with other solutions
To measure comparative performance of our Bloom Filter
based classifier, we measured the system throughput of Mgues-
ser [3], an optimized version of the n-gram based text cat-
egorization algorithm [7]. Mguesser was run on an AMD
Opteron Processor at 2.4 GHz with 16 GB of memory. Ten
languages were used for identification and the program was
run on documents of size 81 MB. The documents were cached
in memory before a timing run. Table 4 compares the per-
formance of the two systems. The average throughput of
Mguesser was measured to be 5.5 MB/sec. In comparison,
our implementation is 85× faster.

Compared to the HAIL implementation [9] our hardware
runs 1.45× faster on ten languages. We note that while

HAIL is able to classify up to 255 languages at this rate,
our hardware is limited to between 10 - 30 languages by
the number of on-chip embedded RAMs. The advantage
of our approach is that the design is flexible and scalable,
allowing the designer to trade off between number of hash
functions and bit vector size. In addition, it does not depend
on a specific external memory configuration, making it eas-
ily portable to other boards. As higher input bandwidth
becomes available, our design can take advantage of par-
allelism offered by Bloom Filters implemented on-chip. In
contrast, HAIL is limited by the number of off-chip SRAM
resources.

Once the HyperTransport communication infrastructure is
improved, we expect to see performance increase closer to
the theoretical peak of 1.4 GB/sec for ten languages. At this
rate, our system is 260× faster than the software baseline
and 4.4× faster than HAIL.

6. CONCLUSIONS
We have developed a new FPGA implementation of n-gram
frequency counting and demonstrated its use in language
classification. Our hardware/software design has been mapped
to a modern FPGA co-processor on the XtremeData XD1000.
Our design has been optimized for maximum scalability,
flexibility, and portability, and can trade off between num-
ber of hash functions and size of look up table depending on
the accuracy and number of languages to be processed. The
design runs at 85× software and 1.45× a comparable hard-
ware implementation. As the XD1000 hardware/software
communication bandwidth improve, our design is capable of
processing ten languages at 1.4 GB/sec.

7. ACKNOWLEDGMENTS
We gratefully acknowledge assistance provided by Dr. Mar-
cus Miller and Lisa Corsetti with the administration of the
XtremeData machine. This work was funded by the Lawrence
Livermore National Laboratory LDRD program’s Storage-
Intensive Supercomputing project under DOE contract W-
7405-ENG-48.

8. REFERENCES
[1] Apache Lucene. http:lucene.apache.org.

[2] Lextek Language Identifier.
http://www.lextek.com/langid/li/.

[3] Mguesser. http://www.mnogosearch.org/guesser/.

[4] Ngram Statistics Package.
http://ngram.sourceforge.net.

[5] SpamAssassin. http://spamassassin.apache.org/.

[6] B. H. Bloom. Space/time trade-offs in hash coding
with allowable errors. Commun. ACM, 13(7):422–426,
1970.

[7] W. B. Cavnar and J. M. Trenkle. N-gram-based text
categorization. In Proceedings of SDAIR-94, 3rd
Annual Symposium on Document Analysis and
Information Retrieval, pages 161–175, Las Vegas, US,
1994.

[8] S. Dharmapurikar, P. Krishnamurthy, T. Sproull, and
J. Lockwood. Deep packet inspection using parallel
bloom filters. IEEE Micro, 24(1):52–61, 2004.

[9] C. M. Kastner, G. A. Covington, A. A. Levine, and
J. W. Lockwood. HAIL: A hardware-accelerated

algorithm for language identification. In 15th Annual
Conference on Field Programmable Logic and
Applications (FPL), Tampere, Finland, Aug. 2005.

[10] P. Krishnamurthy, J. Buhler, R. Chamberlain,
M. Franklin, K. Gyang, A. Jacob, and J. Lancaster.
Biosequence similarity search on the Mercury system.
Journal of VLSI Signal Processing, published online
July 2007.

[11] C. D. Manning and H. Schütze. Foundations of
Statistical Natural Language Processing. MIT Press,
Cambridge (Mass.) and London, 1999.

[12] S. Ralf, B. Pouliquen, A. Widiger, C. Ignat,
T. Erjavec, Tufis, and D. Varga. The JRC-Acquis: A
multilingual aligned parallel corpus with 20+
languages. In 5th International Conference on
Language Resources and Evaluation (LREC’2006),
Genoa, Italy, May 2006.

[13] M. V. Ramakrishna, E. Fu, and E. Bahcekapili.
Efficient hardware hashing functions for high
performance computers. IEEE Transactions on
Computers, 46:1378–1381, 1997.

